

Vivekananda World School

Bright Future Scholarship Program Academic Session (2023-24)

General Instructions:

There are 3 Sections

Section -A Contains 15 questions in Science, Section - B contains 20 questions in English , Section -C contains 15 questions in Maths.

There will be no negative marking

SECTION A (Science)

An object is allowed to fall from a height of 200 m. If time taken for first half of fall is t1 and for remaining half is t2. The

(a) 1/√2-1

(b) √2-1

Grade - 8th

A body is moving with a velocity of 36 km/hr on a rough horizontal surface of coefficient of friction 0.6. If the acceleration due to gravity is 10m/s2, Find the minimum distance within which it can be stopped.

With decrease of area of contact of the body, the frictional force acting between two surfaces

(b) 40/3 m

(d) 25/3 m

(b) remains the same

(c) decreases

(d) becomes zero

4. Food cans are coated with tin and not with zinc because: (a) Zinc is costlier than tin

(c) Zinc is more reactive than tin

(b) Zinc has a higher melting point than tin

(d) Zinc is less reactive than tin

5. Which of the following property is generally not shown by metals?

(a) Electrical conduction

(b) Sonorous in nature 6. The color of pH paper strip at the pH valued of 1, 7, 14 will be

(c) Dullness

(d) Ductility

(a) Green, red and blue

(b) Red, green and blue

(c) Blue, green and red

7. Animals exhibiting external fertilization produce a large number of gametes. Justify with a reason from one's given below (a) The animals are small and want to produce more offspring. b) Food is available in plenty of water.

c) To ensure a better chance of fertilization.

d) Water promotes production of numerous gametes.

8. The common weedicide:

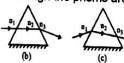
(a) 2, 4-D ethyl ester

(b) Diquat

(c) Maneb

(d) Triadimefon

Which is responsible for ripening of fruits?


(a) Ethylene gas

(b) Nitrous oxide

(c) Propylene

10. The refraction through the prisms are as shown. Pick out the WRONG statement from the following. Path of the light ray in

(a) is correct if n2 >n1 and n2 >n3

(b) is correct if n1 =n2 and n2 >n3

(c) is correct if n2 <n1 and n2 = n3

(d) is correct if n1 >n2 and n2 <n3

11. Which of the following gives the correct increasing order to acidic strengths?

(a) Water < Acetic acid <Hydrochloric acid

(b) Water < Hydrochloric acid <Acetic acid

(c)Acetic acid < Water < Hydrochloric acid

(d) Hydrochloric acid < Water < Acetic acid

12. The Government Agency responsible for purchasing grains from the farmer's safe storage and distribution is:

(a) CBI

(b) FBI

(c) FCI

(d) FDI

13. Project Tiger was launched on

(a) 1 April 1973

(b) 23 May 1973

(c) 21 September 1973

(d) 25 December 1973

14. Which of the following contains oxalic acid?

(a) Sour milk

(b) Tomato

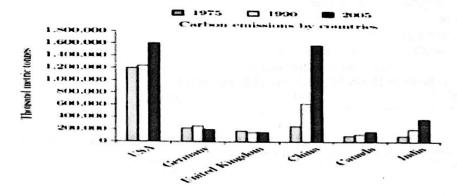
(c) Orange

(d) Tamarind

15. A sound wave travels from east to west, in which direction do the particles of air move?

(a) East-west

(b) North-south


(c) Up and down

(d) None of these

SECTION B (English)

Read the passage and answer the questions that follow.

1. The chart given below provides information about the amount of carbon emissions in different countries during three different years (1975, 1990, and 2005).

	The bar chart compar	es the emission of	carbon dio	xide int	o the atmosphere of six o	countries, in	icluding two of them coming from emergin	ıç
	nations, for three decad							٠
		100			Germany and United King	dom mana	ged to reduce the carbon emissions	
	compared to the other of							
			II. emitted 1.	200.00	0 thousand metric tonnes	in 1975 an	d this count increased to 1,300,000 and	
	1 600 000 thousand me	tric tonnes in 1990	and 2005 r	especti	vely in contrast, the carb	on emission	ns of China was nearly 300,000 thousand	ı
	metric tennes in 1975 a	nd it mea hy nead	100% in 19	990 and	I surned dramatically to in	ist helow 1	600,000 thousand metric tonnes in 2005.	ž.
					entributor in carbon emiss		ood, ood triousaria metric termios in 2000,	
							iod of time, and so were for Canada until	
							to just below 400,000 thousand metric	
	tonnes in 2005.	re emissions in ma	ila ilici casci	a expon	entially from around 100,	000 IN 1975	to just below 400,000 thousand metric	
		tanding of the na	eeana anc	war tha	questions given below			
	16. The data given in the	e graph compares	the amount	of omi	questions given below	•		
	(a) nitrogen	(b) carbon dio		or emis			• 11	
	17. According to the pas			et soll.	(c) oxygen	(a) non	e of these	
	(a) India (b) Chi				•			
	18. Which country has the			erman	y 			
	(a) Germany (b) Unit							
	19. Which country has o	bserved a dramati	c) Canada	(a) I	ndia			
	(a) India (b) Chin	a (c) L						
	(-)	(-/ -		(a) Ge	ermany			
	(a) Germany and India	(b) USA and Ch			n reduction of global CO2			
	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]			(c) ine	United Kingdom and USA	٩	(d) Germany and The United Kingdom	
	Directions: (Q, No. 21-21. An apple of discord	LE) Choose the t	correct mea	ining o	r the following laloms.			
	a)Cause of wealth	b) Cause of illne	A44	c) Caus	se of happiness		d) Course of suspend	
	22.At sixes and sevens	b) oddsc or iiiri	C33	c) Caus	e of flabbilless		d) Cause of quarrel	
	a)In perfect order	b) Very happy		c) In dis	sorder		d) Venuend	
	Direction: (Q23-24) Iden		Adverb in B	old.	,01401		d) Very sad	
	23. Sarah drove cautious	sly as the road wa	s steep.					
	a)Adverb of Time	b) Adverb of Ma	anner	c)Adve	to of Reason		d) Adverb of Degree	
	24. The lady wore tradition				& 1.50 ST			
	a)Adverb of Time	b) Adverb of Ma	nner	c) Adve	rb of Frequency		d) Adverb of Degree	
	Direction: (Q25-27) Cho 25. My friend stood			he follo	wing questions.			
	a)in			-\ 5				
	26. He took off his coat_	b) To he entered	the house	c) By			d) With	
	a)As well as	2000		-\ -			0.7	
		b) As soon as		c) Even			d) But also	
	27.Ahmad is failing three a)Because of this	b) In spite of this				t ginted stud		
	Direction: (Q:28-29) Wh				use of which		d) To Conclude	
	28. Do not accept rides fr	rom strangers who	look susni	cious o	o matter what they say t	0.0001/1000		
	a) Adjective clause, Nou	n clause	look suspi	Cious II			you. se, Adverb clause	
	c) Noun clause, Adjective						, Noun clause	
	29. Yesterday, when I		end I	his loc	ket u) Au	reib Gause	, Noun clause	
	(a) gone, found	(b) went, found			, finding		(d) had asso had 5-d	
	Direction: What are the		clauses in	the se	ntence?		(d) had gone, had find	
	300 La Tova who is the	sister of a famo	us singer :	refused	to interret with the media	. 	she was not dressed in her best	
	clothes.	o oloter or a ramo	us siliger, i	eiuseu	to interact with the media	Decause s	sne was not dressed in her best	
	A. Noun clause, Adverb o	dause		R Pelat	ive clause, Adjective clau			
	C. Adjective clause, Relat				ive clause, Adjective clause ive clause, Adverb clause			
	31Antonym of 'Bogus'			J. INCIAL	ive clause, Adverb clause			
	a) Friendly	b) Actual	c) Regular	-	d) Practical			
	32. Synonym of 'Anticipat		c) Regular		u) Practical			
	a) Gamble	b) Expect	c) Horrific		d) Modiate			
	33. Antonym of Plunge	b) Expect	c) Horring		d) Mediate			
	A. Dive	B. Duck	C Dies		D. C-11			
	34. Synonym of Lacuna	B. Duck	C. Rise		D. Fall			
	A. Hiatus	D. Amethic	0 10-6-4					
		B. Apathy	C. Misfortu	ıne	D. Languor			
	Direction: (35-36) Identify	y the kind of sent	ence.	•				
Ì	35. When uncle Samuel co a) Complex b) Comp	omes to town, we						
•	a) Complex b) Comp	oung	c) Simple		d All of the above			
3	6. How many composite	numbers "		SEC	TION C (Mathematics)		190 (80)	
•	36. How many composite (a) 39	- ilumbers are the	ere in betw	een 50	and 100 (inclusive of 50	o and 100)		
3	37. If the median a, b, c, (a)	dande (a < h < ^	(b) 40 < d < e) is l	r than	(c) 41	200	(d) 42	
	(a) JN3)	(b) k		(c) k/2		(d) 2L/E	
3	8. In a company, the aver	rage salary of male	e employee	s is Re	8200 and that of female		(d) 3k/5 is Rs. 7200. If the average salary per	
е		en the percentage	of female e	mplove	es out of the total employ	/ees is	is no. 1200. It the average salary per	
	(a) 30	a 3050	(b) 40		(c) 20		(d) 25	

39.The sum of fir	ve consecutive odd natur (a) 26	ral numbers is 65. Find the (b) 30	sum of the extreme num (c) 24	bers. (d) 32
40.Find the differ	rence between the produ	ct of the smallest three-dig	it prime number with the	greatest one-digit prime number and the
product of the gr	eatest two-digit prime nu (a) 513	mber with the smallest one (b) 619	-digit prime number. (c) 82	(d) None of these
41.(x2 + 4) (x2 - 4	4) $(x^4 + 16) =$	8.00		The state of the s
	(a) X8 - 16	(b) $x^4 - 16^2$	(c) $x^8 - 128$	(d) $x^6 - 256$
42. If N = 9°, the	N is divisible by how ma (a) 6	iny positive perfect cubes? (b) 7	(c) 4	(d) 5
43.Twenty-two m	nen can complete a piece			ny more men should now be employed to
complete the wor	rk in another 10 days?	57 S	\$ 3 3	200 000
44.In the figure (r	(a) 6 not to scale), O is the cer	(b) 11	(c) 22	(d) 33
	Tot to scale), O is the cen	ner of the circle.		
	A C B			
AP and BP are t	wo chords. C is the po	nt of intersection of AP a	nd OB . If OAC = 30° ar	nd∠PBC = 80°, then ∠AOB =
	(a) 110°	(b) 100°	(c) 130°	(d) 120°
than V. R is half	efficient as V. How ma	pieces of an item in 6 hou ny pieces would R produc	irs. S is four times as ef	ficient as A and is one third less efficient
	(a) 88	(b) 96	(c) 104	(d) 112
s the midpoint	of OR. Find the area of	the shaded region if PA =	8 cm and BR = 4 cm (u	a point on PO such that AO = 1/3 PO and B se π = 3.14)
	(a) 132.68 cm ²	(b) 121.12 cm ²	(c) 108.56 cm	(d) 116.44 cm²
47.The value of	1/72 - 32 + 1/132 - 32 +	1/19² – 3² +	+ 1/49² – 3²= ?	
	(a) 1/16	(b) 3/52	(c) 1/26	(d) 3/26
48. The value of	(x - y)(x + y) + (y - z)(y	+ z) + (z - x) (z + x) is:	8	
	(a) $x + y + z$	(b) $x^2 + y^2 + z^2$	(c) $xy + yz + zx$	(d) 0